31 research outputs found

    On Gaussian Random Supergravity

    Full text link
    We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial K\"ahler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in NN dimensional random supergravities are either approximately supersymmetric with FMsusy|F|\ll M_{\text{susy}} or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log(P)N\log(P)\propto -N. We argue that random supergravities lead to potentially interesting inflationary dynamics.Comment: 36 pages, 9 figure

    Planckian Axions in String Theory

    Full text link
    We argue that super-Planckian diameters of axion fundamental domains can naturally arise in Calabi-Yau compactifications of string theory. In a theory with NN axions θi\theta^i, the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form π<Qjiθj<π-\pi<Q^{i}_{j} \theta^j<\pi. We compute the diameter of the fundamental domain in terms of the eigenvalues f12.˙.fN2f_1^2\le\...\le f_N^2 of the metric on field space, and also, crucially, the largest eigenvalue of (QQ)1(QQ^{\top})^{-1}. At large NN, QQQQ^{\top} approaches a Wishart matrix, due to universality, and we show that the diameter is at least NfNN f_{N}, exceeding the naive Pythagorean range by a factor >N>\sqrt{N}. This result is robust in the presence of P>NP>N constraints, while for P=NP=N the diameter is further enhanced by eigenvector delocalization to N3/2fNN^{3/2}f_N. We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h1,1=51h^{1,1}=51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys fN0.013Mplf_N \approx 0.013 M_{pl}. The random matrix analysis then predicts, and we exhibit, axion diameters >Mpl>M_{pl} for the precise vacuum parameters found in [1]. Our results provide a framework for achieving large-field axion inflation in well-understood flux vacua.Comment: 42 pages, 4 figure

    Systematics of Aligned Axions

    Full text link
    We describe a novel technique that renders theories of NN axions tractable, and more generally can be used to efficiently analyze a large class of periodic potentials of arbitrary dimension. Such potentials are complex energy landscapes with a number of local minima that scales as N!\sqrt{N!}, and so for large NN appear to be analytically and numerically intractable. Our method is based on uncovering a set of approximate symmetries that exist in addition to the NN periods. These approximate symmetries, which are exponentially close to exact, allow us to locate the minima very efficiently and accurately and to analyze other characteristics of the potential. We apply our framework to evaluate the diameters of flat regions suitable for slow-roll inflation, which unifies, corrects and extends several forms of "axion alignment" previously observed in the literature. We find that in a broad class of random theories, the potential is smooth over diameters enhanced by N3/2N^{3/2} compared to the typical scale of the potential. A Mathematica implementation of our framework is available online.Comment: 68 pages, 17 figure

    Chaotic inflation with kinetic alignment of axion fields

    Get PDF
    N-flation is a radiatively stable scenario for chaotic inflation in which the displacements of N≫1 axions with decay constants f1≤…≤fN<MP lead to a super-Planckian effective displacement equal to the Pythagorean sum fPy of the fi. We show that mixing in the axion kinetic term generically leads to the phenomenon of kinetic alignment, allowing for effective displacements as large as N−−√fN≥fPy, even if f1,…,fN−1 are arbitrarily small. At the level of kinematics, the necessary alignment occurs with very high probability, because of eigenvector delocalization. We present conditions under which inflation can take place along an aligned direction. Our construction sharply reduces the challenge of realizing N-flation in string theory
    corecore